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ABSTRACT

An important element of monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is an
infrasound network.  For reliable monitoring, it is important to distinguish between nuclear explosions and other
sources of infrasound.  This will require signal (event) classification after a detection is made.  We have
demonstrated the feasibility of using neural networks to classify various infrasonic events.  However,
classification of these events can be made more reliably with enhanced quality of the recorded infrasonic signals.
One means of improving the quality of the infrasound signals is to remove background noise.  This can be carried
out by performing signal separation using Independent Component Analysis (ICA).  ICA can be thought of as an
extension of Principal Component Analysis (PCA) .  Using ICA, noise, and other events that are not of concern,
can be removed from the signal of interest.  This is not a filtering process, but rather a technique that actually
separates out the background noise from the signal of interest, even if the signals have overlapping spectra.
Therefore, not only is the signal of interest recovered, but so is the background noise.  The higher fidelity signal
of interest (compared to any one sensor channel signal from the infrasound array before separation) can be
presented to an event classifier (e.g., a neural network), and the background noise can also be further scrutinized.

We show two examples of infrasound signal separation using ICA.  The ICA is performed using a neural network
approach, i.e., an unsupervised nonlinear PCA subspace learning rule.  The first example involves artificially
mixing three different infrasonic signals from three separate events using a random mixing matrix, these mixed
signals are then used to recover the original event signals.  The second example is in the true spirit of ICA, i.e., the
separation is performed blindly.  From four channels of an infrasound array, these four inputs are used in the ICA
to separate two signals, i.e., one “signal”  the other “noise.”  The mixing matrix is not known, however, the
separated signal of interest is shown to be the infrasound signal of a volcano eruption, and the separated noise is
shown to contain characteristics of a microbarom signal.  Moreover, in spite of overlapping spectra between the
output signals of the ICA, separation of the signals is possible.

Key Words: Infrasound, independent component analysis, signal separation, neural network, nonlinear principal
component analysis, overlapping spectra.



OBJECTIVE

The proposed International Monitoring System (IMS), for verifying compliance of the Comprehensive Nuclear-
Test-Ban Treaty (CTBT), includes an infrasound network that will be capable of detecting nuclear explosions.  In
the past, the primary interest in monitoring infrasound waves from nuclear explosions was to detect low-frequency
signals associated with large (megaton) yield nuclear events.  The main emphasis for monitoring compliance of the
CTBT is the ability to detect and classify kiloton-size nuclear explosions.  Infrasound signals from these events
have a much higher frequency content than those from larger yield nuclear explosions.  The infrasound signals
received at a single station (multi-sensor array) can contain multiple events that can overlap in frequency and make
reliable detection and classification of a nuclear explosion difficult.  Therefore, the objective of this paper is to
show how Independent Component Analysis (ICA) [1-4] can be used to separate infrasonic signals, in spite of
overlapping spectra, recorded on a multi-sensor array.  The ICA is performed using a neural network approach,
specifically, an unsupervised nonlinear Principal Component Analysis (PCA) subspace learning rule.  The purpose
of  the signal separation process is to separate the signal of interest from the background noise.  It is assumed that
there is one dominant event recorded along with background noise (which can consist of multiple, less dominant,
components, including noise).  The separated signal of interest will be higher quality compared to any one sensor
channel signal from the infrasound array before separation.  This high fidelity separated signal of interest can then
be presented to an event classifier, e.g., a neural network [5, 6], and the background noise can also be further
evaluated.

RESEARCH ACCOMPLISHED

A succinct presentation of ICA is given first followed by a brief discussion of how ICA can be carried out using
neural networks.  Finally, two examples of signal separation using a neural network ICA approach is presented.

Independent Component Analysis

Independent component analysis (ICA) can be thought of as an extension of PCA [7].  It is used primarily to
separate unknown source signals from their linear mixtures, this is known as the blind source signal separation
problem.  The characteristics of the transmission channel does not have to be known to separate the source signals
from a set of noisy observable (measured) signals.  Moreover, even when the source signals have overlapping
spectra, separation of the signals is possible.  Blind source separation techniques can be applied to array
processing, medical signal processing, communications, speech processing, and image processing, to name a few.
The main difference between PCA and ICA is that instead of the uncorrelatedness property associated with
standard PCA, in ICA the coefficients of the linear expansion of the data vectors must be mutually independent, or
as independent as possible.  What this means is that higher-order statistics [8, 9] must be used to determine the
ICA expansion. In standard PCA, second-order statistics provides only decorrelation.  Higher-order statistics are
useful when dealing with non-Gaussian processes, non-minimum phase problems, colored noise, or even nonlinear
processes [8].  Therefore, it is not surprising that nonlinearities must be used in the learning phase, even though the
final input/output mapping is linear [10].  Neural network structures have been developed to perform ICA [10].

We assume that there exist q zero-mean wide-sense stationary source signals )( , ),( ),( 21 ksksks qL  for

L 2, 1,=k  (the discrete time index or for images the pixels), that are scalar-valued and mutually statistically
independent for each sample value k.  The independence condition can be formally defined by stating that the joint
probability density of the source signals is equal to the product of the marginal probability densities of the
individual signals, i.e.,
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The individual source signals are also assumed to be unknown (unobservable), however, we do have access to a set

of h noisy linear mixtures of the unknown signals, )( , ),( ),( 21 kxkxkx hL .  These measured signals are given by
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for hj  , 2, 1,= L , the elements ija  are assumed to be not known, and )(kn j  is additive measurement noise.  We

can now define the following, [ ]T
h kxkxkxk )()()(=)( 21 Lx , 1x)( hk ℜ∈x ,

[ ]s( ) = ( ) ( ) ( )1 2k s k s k s kq
T

L , 1x)( qk ℜ∈s  (the source vector consisting of the q independent

components), and [ ]qaaaA L21= , qhxℜ∈A  (the mixing matrix), where the column vectors of A  are

the basis vectors of the ICA expansion.  Equation (2) can now be written in vector-matrix form as

)(+)(=)(+)(=)(
1=

kkskkk
q

i
ii nanAsx ∑ (3)

referred to as the ICA expansion.  We will assume the mixing matrix A  contains at least as many rows as columns
( qh ≥ ), and it has full column rank, i.e., q=)(Aρ  (i.e., the mixtures of the source signals are all different).

Independent Component Analysis Using Neural Networks

This discussion pertaining to the neural network approach for blind source separation using ICA follows the
presentation by Karhunen et al. [10].  Figure 1 shows the basic neural architecture to perform the separation of
source signals (i.e., estimate the independent components), and estimate the basis vectors of the ICA expansion,
[i.e., estimate the column vectors of the mixing matrix A  in (3)].
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Figure 1. The ICA network.  The three layers perform whitening, separation, and estimation of the basis vectors.

The weight matrices that are necessary to determine are V W,  ,T  and Q .

Prewhitening Process

The whitening process that proceeds the separation step (i.e., prewhitening) is a critical procedure.  This process
normalizes the variances of  the observed signals to unity.  In general, separation algorithms that use prewhitened
inputs often have better stability properties and converge faster.  However, whitening the data can make the
separation problem more difficult if the mixing matrix A  is ill-conditioned or if some of the source signals are
relatively weak compared to the other signals [11, 12].  The input vectors x( )k  are whitened by applying the
transformation

v Vx( ) = ( )k k  (4)



where v( )k  is the kth whitened vector and V  is the whitening matrix.  The whitening matrix can be determined in
two ways: (i) using a batch approach, or (ii) neural learning.  For the batch approach, PCA is used to determine the
whitening matrix, it is given as

V D E= -1/ 2 T (5)

where V ∈ ℜqxh ,  [ ]D = diag 1 2λ λ λL q
qxq∈ℜ , and [ ]E c c c= 1 2 L q

hxq∈ℜ , with λ i : ith

largest eigenvalue of the covariance matrix { }C x xx
T hxhk k= E ( ) ( ) ∈ ℜ , and ci  for i q= 1,  2,  ,  L  are

associated (principal) eigenvectors.  Therefore, the transformation in (4) actually consists of two steps, i.e.,
compression and whitening.  The compression step consists of selecting the proper value for q (the number of
source signals).  Therefore, the PCA described above for the whitening can also be used to select (i.e., estimate)
the number of source signals (q) to be recovered (or the number of independent components) if the noise term

n( )k  in (3) is assumed to be zero-mean Gaussian white noise with covariance matrix { }E ( ) ( ) = 2n n Ik kT
hσ .  In

the noise covariance matrix, σ2  is the conjoint variance of the components of the noise vector n( )k .  The noise

vector is assumed to be uncorrelated with the sources si k( ) , for i q= 1,  2,  ,  L .  Given these assumptions, the

covariance matrix of the data vectors x( )k  is given by
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The q largest eigenvalues of the covariance matrix in (6), i.e., λ λ λ1 2,  ,  ,  L q , are some linear combination of

the source signal powers { }E ( )2si k  added to the noise power σ2 . Therefore, the remaining h q-  eigenvalues

correspond to only noise (theoretically these eigenvalues are equal to σ2 ).  The q largest  signal eigenvalues will
be distinctly larger than the remaining noise eigenvalues if the signal-to-noise ratio is large enough.  In practice,
the eigenvalues of the input covariance matrix are determined from the time-average of the covariance matrix over
the available data vectors given by
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where N is the total number of input vectors.  A stochastic approximation algorithm to learn the whitening matrix
is given by

V V v v I V( + 1) = ( ) - ( )[ ( ) ( ) - ] ( )k k k k k kTµ (8)

where it is recommended to adjust the learning rate parameter according to
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where • 2  is the L2 or Euclidean norm of a vector, and γ  is the forgetting factor.  When the whitening

(orthogonal) transformation V  is applied to the inputs as in (4), the resulting whitened outputs v( )k  will possess
the whiteness condition, i.e.,

{ }E ( ) ( ) =v v Ik kT
q (10)

Separation Process

The separation process can be carried out by using many different methods [4, 11, 13].  Approximating contrast
functions, maximized by separating matrices, have been developed [4].  Contrast functions typically require
extensive batch computations using estimated higher-order statistics of the data and lead to very complicated



adaptive separation algorithms.  However, it is sufficient to use the kurtosis (fourth-order cumulant) of the data.
Another class of separation methods involves using neural networks to perform the separation of the source
signals [12].  In Fig. 1, the second stage of the architecture is responsible for the separation of the whitened signals
v.  The linear separation transformation is given by

y W v( ) = ( )k kT (11)

where W ∈ℜq qx  ( W W IT
q= ) is the separation matrix.  Thus the separated signals are the outputs of the second

stage, i.e., $s y( ) = ( )k k .  An interesting observation is once the source signal s( )k  has been estimated, this means

that the pseudo-inverse of A , i.e., A+ ,  must have been also “blindly” determined [refer to (3)].

One very straightforward neural learning method to determine the separation matrix is based on the nonlinear PCA
subspace learning rule [14-16] given by

W W v W y y( + 1) = ( + ( [ ( - ( { ( }] { ( }k k k k k g k g kT) ) ) ) ) )µ (12)

where v(k)  is the prewhitened input vector given in (4), and the function g( )•  is a suitably chosen nonlinear

function usually selected to be odd in order to ensure stability and for separation purposes.  It is recommended that
the learning rate parameter µ( )k  be adjusted according to the adaptive scheme given in (9), with v( )k  replaced by

y( )k .  Also, for good convergence, it is best to select the initial weight matrix W(0) to have as columns a set of
orthonormal vectors.  Typically, the nonlinear function g( )•  is chosen as

g t t( ) = tanh( / )β β (13)

where g t
f t

t
( ) =

d ( )

d
 and f t t( ) = ln[cosh( / )]2β β , the logistic function.  This is not an arbitrary choice for the

nonlinearity in the learning rule of (12).  It is motivated by the fact that when determining the ICA expansion
higher-order statistics  are needed.  This can be seen by observing another neural learning rule to perform
separation of unknown signals.  This learning rule is called the bigradient algorithm [10, 17, 18] given by

W W v y W I W W( + 1) = ( ) + ( ) ( ) [ ( )] + ( ) ( )[ - ( ) ( )]k k k k g k k k k kT Tµ γ (14)

where γ ( )k  is another gain parameter, typically about 0.5 or one.  This is a stochastic gradient algorithm that

maximizes or minimizes the performance criterion

J f yi
i

q
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under the constraint that the weight matrix W  must be orthonormal.  The orthonormal constraint in (15) is
realized in the learning rule in (14) in an additive manner.  With the appropriate function f ( )•  in (15), the

performance criterion would involve the sum of the fourth-order statistics (fourth-order cumulants) of the outputs,
i.e., the kurtosis [8].  Therefore, the criterion would be either minimized for sources with a negative kurtosis and
maximized for sources with a positive kurtosis.  Source signals that have a negative kurtosis are often called sub-
Gaussian signals and sources that have a positive kurtosis are referred to as super-Gaussian signals.  In (15) the
expectation operator would be dropped because we only consider instantaneous values.  We now write the logistic
function f t t( ) = ln[cosh( )]  (for β = 1) in terms of a Taylor series expansion

 f t t t t( ) = ln[cosh(t)] = / 2 - / 12 + / 45 -  2 4 6 L (16)

The second-order term t 2 / 2  is on the average constant due to the whitening. The nonlinearity would then be

given by g t
f t

t
t t t( ) =

d ( )

d
= tanh(t) = - / 3 + 2 / 15 -  3 5 L , and the cubic term will be dominating (an odd function)

if the data are prewhitened.



Estimation of the ICA Basis Vectors

This is the last stage in Fig. 1.  Two basic methods can be used to estimate the ICA basis vectors, or the column

vectors of the mixing matrix A in (3).  The first method is a “batch” approach where the estimate of A, i.e., $A ,  is
given by

$A ED W= 1/2  (17)

where D is the eigenvalue matrix shown in (5), E has columns that are the associated eigenvectors shown in (5),
and W is the separation matrix.  The second method is a neural approach for estimating the ICA basis vectors.
From Fig. 1, the last stage gives an estimate of the observed data as

$x Qy= (18)

Comparing (18) with (3) for n=0  (i.e., x As= ), we see that Q A= $  since y s= $ .  Therefore, the columns of the
Q matrix are estimates of the columns of A, the ICA basis vectors.  A neural learning algorithm can be derived
from a representation error performance measure given by

J( ) =
1

2
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2
2
2Q x x x Qy$ (19)

Taking a steepest descent approach given by Q Q Q( + 1) = ( ) - ( )k k JQµ∇ , the neural learning rule for estimating

the ICA basis vectors is

Q Q x Q y y( + 1) = ( ) + ( )[ ( ) - ( ) ( )] ( )k k k k k k kTµ (20)

where µ > 0  is the learning rate parameter that can be adapted during learning using (9) with v(k) replaced by

Q y( ) ( )k k .

Simulation 1

This example involves separating three different artificially mixed infrasonic signals.  These infrasonic
signals were recorded from a single station, 4-sensor (F-array), infrasound array in Windless Bight, Antarctica as
separate events.   The three signals are shown in Fig. 2(a), and are (i) an infrasonic signal from a volcano eruption
at Galunggung, Java (recorded in 1982), (ii) a mountain associated wave originating from New Zealand (recorded
in 1983), and (iii) and an internal atmospheric gravity infrasound wave (recorded in 1983).  The three signals are
artificially mixed using a random mixing  matrix given by

A =

0.3050 0.9708 0.4983

0.8744 0.9901 0.2140

0.0150 0.7889 0.6435

0.7680 0.4387 0.3200

















(21)

Therefore, four observed mixed signals are generated from x As( ) = ( )k k , for k = 1,  2,  ,  768L , and are shown in

Fig. 2(b).  The eigenvalues of the estimated covariance matrix of the observed data, given by (7),  are

λ1 = 2.1346 , λ2 = 0.1976 , λ 3 = 0.0434 , and λ4
-16= -3.7772x10 . The fourth eigenvalue is considerably

smaller than the first three.  Therefore, only the first three largest ones need to be retained, and from (5) the

whitening matrix V ∈ℜ3x4  provides both whitening of the observed data and compression.  So h = 4  and q = 3

(the number of source signals to be recovered).  The nonlinear PCA neural learning rule in (12) is used to compute

the separation matrix W ∈ℜ3x3 , and the nonlinearity g( )•  is selected as the derivative of the logistic function as

shown in (13) with β = 1.  The initial weight (separation) matrix W(0)  is selected randomly, however, the

columns of the matrix are constrained to be orthonormal.  The learning rate adjustment scenario in (9) is used with
v(k) replaced by y(k), and the forgetting factor is set at γ = 0.9 .  It required 250 training epochs for the neural

network weights to converge.  Fig. 2(c) shows the resulting three separated signals.  Because we know what the
source signals are, the correlation coefficient can be computed for each of the separated signals with respect to
the known (actual) source signals.  These correlation coefficients are shown in Fig. 2(c).  The correlations of the



separated signals with respect to the actual source signals are almost perfect.  The negative correlation coefficient
indicates that a 180O phase shift has occurred in the output of the ICA separation process.
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Figure 2. (a) Three original infrasonic source signals.  (b) “Observed” mixed infrasound signals.  (c) Separated
infrasonic source signals using the nonlinear PCA subspace learning rule.

Simulation 2

The second example involves processing four infrasound signals from a large volcano eruption in Galunggung, Java
in 1982.  The signals analyzed were recorded from a single station, 4-sensor (F-array), infrasound array in
Windless Bight, Antarctica.  Fig. 3(a) shows the four recorded signals after beamforming [5] is applied to time
align the signals to a common reference in the sensor array.  The nominal sampling frequency is 1 Hz, and 590
time samples were retained from each signal record for analysis.  It is assumed that the number of source signals is



two, i.e., a signal of interest and noise.  Therefore, in the ICA, q=2 and n=4, the number of observed signals, i.e.,
the measured signals that are shown in Fig. 3(a) (which are the inputs to the ICA).  The inputs are first prewhitened
using the batch approach given in (4) and (5).  Only the first two (largest) eigenvalues are retained along with the

associated eigenvectors.  Therefore, the whitening matrix V ∈ℜ2x4  computed using (5) provides both whitening
of the observed data and compression.  The nonlinear PCA neural learning rule in (12) is used to compute the

separation matrix W ∈ℜ2x2 , and the nonlinearity g( )•  is selected as the derivative of the logistic function as

shown in (13) with β = 1.  The initial weight (separation) matrix W(0)  is selected randomly, however, the

columns of the matrix are constrained to be orthonormal.  The learning rate adjustment scenario in (9) is used with
the forgetting factor is set at γ = 0.9 .  It required 50 training epochs for the neural network weights to converge.

Fig. 3(b) shows the two separated signals.  The signal in the top graph appears to be the volcano infrasound signal
and the signal in the bottom graph has the semblance of “noise.”  Figure 4(a) shows the first separated signals
superimposed on the four input signals.  The correlation coefficient computed for each input signal with the first
separated signal is relatively high.  Figure 4(b) shows the first separated signal superimposed on the average of the
four input signals.  In this case, the correlation coefficient is very high compared to the individual channel signals
and the separated signal.  This is due to reducing some of the noise in the signals from the simple averaging of the
four input signals.  Figure 5(a) shows the Power Spectral Density (PSD) of the four input signals, and Fig. 5(b)
shows the PSD of the averaged input signal in the top graph and the PSD of the first separated signal in the bottom
graph.  The PSDs shown are an estimate of the respective signal’s power spectrum based on the periodogram of the
signals.  Figures 4(a) & 4(b) give strong evidence that the first separated signal is the volcano signal.  This is
further evidenced in Fig. 5(b) by comparing the shape of the PSD of the average of the four input signals with the
PSD of the first separated signal.
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Figure 3. (a) Four volcano infrasound signals recorded on a four-sensor, single station, array in Windless Bight,
Antarctica in 1982 (inputs to the ICA).  (b) Two separated signals (outputs of the ICA).

Figure 6(a) shows the second ICA separated signal in the top graph and a typical microbarom signal in the bottom
graph.  The microbarom signal was recorded at Windless Bight, Antarctica on a T-array (3-sensor) infrasound array
(the nominal sampling frequency is 4 Hz).  In Fig. 6(b), the top graph is a rescaled  version of the PSD of the first
separated signal show in the bottom graph of Fig. 5(b), and bottom graph is the PSD of the microbarom signal.
Figure 6(c) shows the PSD of the second separated signal in the top graph, and the PSD of the microbarom signal
in the bottom graph,  and Fig. 6(d) is a rescaled version of Fig. 6(c).  Comparing the top and bottom graphs in Fig.
6(b), there is no evidence of the microbarom signal in the first separated signal.  However, when comparing the top
and bottom graphs in Fig. 6(d) we see that there is evidence of a microbarom signal buried in the second ICA



separated signal.  Specifically, in the 0.1 to 0.2 Hz region there are two spectral peaks in both PSDs.  Probably
more profound is the observation made when comparing the bottom graph in Fig. 5(b) for the first separated signal,
to the top graph in Fig. 6(c) for the second separated signal.  Upon first glance when comparing these two spectra,
they appear to be almost the same.  However, when they are rescaled, shown in the top graph in Fig. 6(b) for the
first separated signal, and the top graph in Fig. 6(d) for the second separated signal, the differences in the spectra
can be seen.  In fact, the correlation coefficient computed between the two time-domain signals is very low,

specifically, 1.7992x10-4 .  But more importantly is the overlapping spectra that exists between the two signals in
the frequency range from 0.01 Hz to 0.02 Hz.  In spite of this spectral overlap, ICA can separate the signals.
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signals, and Bottom Graph: PSD of the first ICA separated signal.
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Figure 6. (a) Top Graph: Second ICA separated signal, Bottom Graph: microbarom infrasound signal recorded
on the T-array.  (b) Top Graph: PSD of the first separated signal, and Bottom Graph: PSD of the microbarom
signal.  (c) Top Graph: PSD of the second separated signal, and Bottom Graph: PSD of the microbarom signal.  (d)
Top Graph: Rescaled PSD of the first separated signal, and Bottom Graph: Rescaled PSD of the microbarom
signal.

CONCLUSIONS AND RECOMMENDATIONS

We have shown the feasibility of applying Independent Component Analysis (ICA), using a neural learning
algorithm, to single station infrasound signals for the purpose of separating signal from noise.  The second
example presented showed that infrasound signals recorded on a 4-sensor array (F-array) could be separated into a
signal of interest (volcano event) and background noise.  The signal of interest was shown to be the volcano
infrasound signal.  It was also discovered that the background noise contained a microbarom component.  This was
determined by observing the noise signal in the frequency domain (i.e., its PSD) compared to the PSD of a typical
microbarom signal.  It was also observed that the two separated signals had overlapping spectra.  In spite of this, the



ICA was able to separate the signals.  Further research in this area will involve investigating other infrasound
recordings from the historical database [19, 20] for other types of events.  When enough separated signals are
generated for different infrasound events, this data set will be used to train and test a neural network classifier.
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